Controlling charge transport in single molecules using electrochemical gate.
نویسندگان
چکیده
We have studied charge transport through single molecules covalently bound to two gold electrodes in electrolytes by applying a voltage between the two electrodes and a reference electrode (gate). This electrochemical gating can effectively control the current through the molecules, depending on the electronic properties of the molecules. For electrochemically inactive molecules, such as 4,4'-bipyridine and 1,4'-benzenedithiol, the gate voltage influences the transport current only slightly (less than 30%). This lack of significant gate effect is attributed to the large LUMO-HOMO gaps of the molecules and the screening of the gate field by the two electrodes. For nitro-oligo(phenylene ethynylene) (OPE-NO2), which undergoes multiple irreversible reductions at negative gate voltages, the current through the molecules can be modulated several folds by the gate. This gate effect is irreversible and associated with the reduction of the NO2 group to different products that have different electron withdrawing capabilities from the conjugate backbone of the molecule. The most interesting molecules are perylene tetracarboxylic diimide compounds (PTCDI), which exhibit fully reversible redox reactions. The current through PTCDI can be reversibly varied and controlled over three orders of magnitude with the gate. Such a large gate effect is related to a redox state-mediated electron transport process.
منابع مشابه
Ambipolar transport in an electrochemically gated single-molecule field-effect transistor.
Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)-lowest unoccupied (LUMO) molecular orbital energy gap associa...
متن کاملSingle-Molecule Charge Transport and Electrochemical Gating in Redox-Active Perylene Diimide Junctions
A series of redox-active perylene tetracarboxylic diimide (PTCDI) derivatives have been synthesized and studied by electrochemical cyclic voltammetry and electrochemical scanning tunnelling microscopy break junction techniques. These PTCDI molecules feature the substitution of pyrrolidine at the bay (1,7-) position of perylene and are named pyrrolidine-PTCDIs. These moieties exhibit a small ban...
متن کاملTunable charge transport in single-molecule junctions via electrolytic gating.
We modulate the conductance of electrochemically inactive molecules in single-molecule junctions using an electrolytic gate to controllably tune the energy level alignment of the system. Molecular junctions that conduct through their highest occupied molecular orbital show a decrease in conductance when applying a positive electrochemical potential, and those that conduct though their lowest un...
متن کاملThermally activated electron transport in single redox molecules.
We have studied electron transport through single redox molecules, perylene tetracarboxylic diimides, covalently bound to two gold electrodes via different linker groups, as a function of electrochemical gate voltage and temperature in different solvents. The conductance of these molecules is sensitive to the linker groups because of different electronic coupling strengths between the molecules...
متن کاملN, S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye
In contemporary research, “Heterostructure” assemblies play an important role in energy conversion systems, wherein the composite assemblies facilitate faster charge carrier transport across the material interfaces. The improved/enhanced efficiency metrics in these systems (electro/photo-electrochemical processes/devices) is due to synergistic interaction and synchronized charge transport a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 131 شماره
صفحات -
تاریخ انتشار 2006